validez semántica
Una inferencia es semánticamente válida si y sólo si no puede ser el caso que las premisas sean verdaderas y su conclusión falsa a la vez.
(v. inferencia, validez sintáctica)
Una inferencia es semánticamente válida si y sólo si no puede ser el caso que las premisas sean verdaderas y su conclusión falsa a la vez.
(v. inferencia, validez sintáctica)
Una inferencia es sintácticamente válida si y sólo si su conclusión puede ser derivada (o deducida) de las premisas por medio de las reglas de inferencia establecidas.
(v. derivación, validez semántica)
El hecho de ser verdadera o falsa una proposición. La lógica que estudiamos en Aprende Lógica solamente admite estos dos valores de verdad. La exclusión de la posibilidad de que una proposición no pueda ser ni verdadera ni falsa queda reflejada en el principio del tercio excluso (o principio de bivalencia)
Las lógicas que no admiten el principio de tercio excluso son las lógicas poliádicas o multivariadas. Así, por ejemplo Lukasiewicz y Tarski han formulado luna lógica de tres valores (trivalente) en la que se admiten tres valores de verdad: verdadero, falso, y posible)
La verdad, obviamente, es uno de los dos valores de verdad que puede adoptar una proposición: el otro es el de falsedad.
Una proposición es verdadera cuando no es falsa, es decir, cuando su significado guarda cierta relación con un estado de cosas del mundo.
(v. falso, valor de verdad)